Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256793

ABSTRACT

Device structure, light source height, and climatic factors can potentially affect the catching of target pests in light traps. In this study, the installation of an anti-escape cover in a newly designed light trap significantly increased the number of catches of tea leafhoppers, Empoasca onukii, an economically significant pest of tea gardens, and it prevented 97.95% of leafhoppers from escaping. A series of assessments were performed in the field and showed that the optimal trapping window of the light trap was between 1.5 and 2.5 h (2 ± 0.35 h) after sunset, and the starting time of the window was positively correlated with the sunset time. The number of leafhopper catches decreased sharply when the height of the light source was above the flight height range of E. onukii adults. The height of the light source was optimal between 20 and 40 cm above the tea canopy. The efficacy of the light traps for capturing leafhoppers decreased in the autumn peak period. High numbers of leafhopper catches by the newly designed light trap in the summer could reduce E. onukii population sizes in the autumn. Overall, the newly designed light trap can be used to reduce E. onukii adult populations in tea gardens.

2.
Chem Res Toxicol ; 36(12): 2001-2009, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38014781

ABSTRACT

Aromatic amines are a class of carcinogenic compounds present in tobacco smoke that are listed on the U.S. Food and Drug Administration (FDA) list of harmful and potentially harmful constituents (HPHCs) in tobacco products and tobacco smoke. The yields of six aromatic amines (1-aminonaphthalene [1-AN], 2-aminonaphthalene [2-AN], 3-aminobiphenyl [3-ABP], 4-aminobiphenyl [4-ABP], ortho-toluidine [o-TOL], and o-anisidine [o-ANI]) in the mainstream smoke from 23 commercial filtered cigars, 16 cigarillos, and 11 large cigars were determined using solid-phase microextraction coupled to gas chromatography triple quadrupole mass spectrometry (SPME headspace GC-MS/MS). The commercial cigars were smoked under the Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) Recommended Method 64 using a linear cigar smoking machine. The aromatic amine yields in the mainstream smoke from 50 commercial cigars show high levels of variation within and between the products. The average yields of the aromatic amines in the filtered cigars, cigarillos, and large cigars were 108, 371, and 623 ng/cigar for o-TOL; 6, 14, and 22 ng/cigar for o-ANI; 65, 114, and 174 ng/cigar for 1-AN; 25, 59, and 87 ng/cigar for 2-AN; 6, 17, and 27 ng/cigar for 3- ABP; and 8, 11, and 17 ng/cigar for 4-ABP, respectively. The relationships between aromatic amines and (1) total particulate matter (TPM), (2) water-soluble proteins, and (3) water-insoluble proteins were evaluated. We found that the aromatic amines showed a good linear response with TPM on a per cigar basis and showed significant positive correlations with proteins. In addition, the water-insoluble proteins make a greater contribution to the formation of aromatic amines compared to the water-soluble proteins.


Subject(s)
Tobacco Products , Tobacco Smoke Pollution , Amines/chemistry , Smoke/analysis , Tandem Mass Spectrometry/methods , Tobacco Products/analysis , Tobacco Smoke Pollution/analysis , Water
3.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37004204

ABSTRACT

Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 µM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 µM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 µM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 µM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 µM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 µM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 µM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.


Consumption of ergot alkaloids found in endophyte-infected tall fescue can lead to symptoms of fescue toxicosis, such as vasoconstriction, in ruminant livestock species. Ergovaline is one of the primary ergot alkaloids responsible for causing vasoconstriction when toxic varieties of fescue are consumed. It has been previously shown that ergovaline causes vasoconstriction by interacting with vascular serotonin receptors in cattle and sheep. Depending on when ergovaline exposure occurs, ergovaline can function as an agonist (stimulant) or antagonist (inhibitor) of vascular activity. However, it is unclear how the duration of ergovaline exposure affects vasoconstriction caused by serotonin. Experiments were conducted using the bovine mesenteric artery and mesenteric vein that were exposed to either 0, 0.01, or 0.1 µM ergovaline for 24-h prior to serotonin additions or simultaneously with serotonin additions. Maximum contractile response data were recorded using a multimyograph system and normalized as a percentage of the contractile response produced by the reference compound, KCl. The results of these experiments demonstrated that the duration of ergovaline exposure influences serotonin-mediated vasoconstriction and possibly vasorelaxation in bovine mesenteric vasculature. If ergovaline and serotonin exposure occur simultaneously, ergovaline can act as an agonist or antagonist of serotonin-mediated vasoconstriction. If serotonin exposure occurs after prior ergovaline exposure, serotonin can induce vasorelaxation of blood vessels. Understanding how complex interactions between ergovaline and serotonin occur and affect vascular function will aid in the development of strategies to mitigate sustained vasoconstriction caused during fescue toxicosis.


Subject(s)
Ergot Alkaloids , Serotonin , Cattle , Animals , Serotonin/pharmacology , Ergot Alkaloids/toxicity , Ergotamines/toxicity , Receptors, Serotonin , Animal Feed/analysis
4.
Chem Res Toxicol ; 36(4): 685-690, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36926865

ABSTRACT

The first certified reference cigarette, 1R6F, was produced by the Center for Tobacco Reference Products at the University of Kentucky in 2015 and certified in 2016. 1R6F reference cigarettes have been stored at -20 °C since they were manufactured. 1R6F has been widely used as a control cigarette or a monitor for nonclinical investigational purposes in tobacco product analysis and scientific research. However, there is little published data to demonstrate the stability of the 1R6F cigarette. In this paper, we report the results of a long-term storage study of the 1R6F cigarette tobacco filler and the resulting mainstream smoke. 1R6F cigarettes were stored under different conditions (room temperature, refrigerator (4 °C), and freezer (-20 °C)) for 3 years since April 2017. The constituents in the cigarette tobacco filler (oven volatiles, nicotine, N'-nitrosornicotine (NNN), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)) and the mainstream smoke (nicotine, NNN, NNK, benzo[α]pyrene, carbon monoxide, total particulate matter) were analyzed. Some physical parameters (resistance to draw and ventilation) were also measured. Analysis of our data showed that no significant differences in these major constituents were detected after storage of the 1R6F cigarette at -20 °C for 3 years.


Subject(s)
Nitrosamines , Tobacco Products , Nicotine , Nitrosamines/analysis , Smoke
5.
Anal Bioanal Chem ; 414(14): 4227-4234, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35410388

ABSTRACT

Aromatic amines are a class of carcinogenic compounds in tobacco smoke that are listed on the FDA list of harmful and potentially harmful constituents (HPHCs). A method using solid-phase microextraction-coupled to gas chromatography-triple quadrupole mass spectrometry (SPME headspace GC-MS/MS) was developed and validated for the quantitative determination of six aromatic amines, including 1-aminonaphthalene (1-AN), 2-aminonaphthalene (2-AN), 3-aminobiphenyl (3-ABP), 4-aminobiphenyl (4-ABP), o-toluidine (o-TOL), and o-anisidine (o-ANI), in the mainstream smoke of cigarettes, cigars, and heated tobacco products. The method developed here combines high sensitivity with simple sample preparation and has demonstrated satisfactory linearity for all six aromatic amines with correlation coefficients greater than 0.9994. The limits of detection range and the limits of quantitation range were 12-96 pg/mL and 41-320 pg/mL, respectively. Their recoveries and coefficients of variation (CV%) were 90-112% and 2.1-6.6%, respectively. The new SPME headspace GC/MS/MS method has been successfully applied to measure the contents of the six aromatic amines in the mainstream smoke of cigarettes, cigars, and heated tobacco products.


Subject(s)
Smoke , Tobacco Products , Amines/analysis , Gas Chromatography-Mass Spectrometry/methods , Smoke/analysis , Tandem Mass Spectrometry/methods , Nicotiana/chemistry
6.
Animals (Basel) ; 12(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35327147

ABSTRACT

Ergot alkaloids produced by a fungal endophyte that infects tall fescue (Lolium arundinaceum; (E+ TF) can induce constriction of the vasculature in ruminants, resulting in "fescue toxicosis". Legumes contain isoflavones that have been demonstrated to prevent and reverse E+ TF vasoconstriction. Several legumes are conventionally utilized in ruminant production, but can vary in both isoflavone concentration and composition. A feeding study was conducted to determine if isoflavone supplementation via red clover (Trifolium pratense), white clover (Trifolium repens), or soybean (Glycine max) meal can alleviate vasoconstriction when wether goats were challenged with E+ TF seed. The basal diet was chopped grass hay ad libitum. Carotid luminal areas were obtained pre- and post-ruminal infusions of E+ TF seed (15 µg kg BW−1 ergovaline + ergovalanine ± red clover, white clover, or soybean meal at 2.61 mg kg BW−1). When goats were challenged with E+ TF seed, the mean carotid luminal areas decreased by 56.1% (p < 0.01). All treatments were able to partially mitigate vasoconstriction, with red clover being the most effective (+39.8%), and white clover and soybean meal eliciting an intermediate response (+30%, p < 0.01). Results indicate that legumes can relax vasoconstriction in goats consuming ergot alkaloids, despite differences in isoflavone profile and concentrations.

7.
J Anal Toxicol ; 46(6): 625-632, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-34155520

ABSTRACT

Smokeless tobacco (ST) products are used worldwide, and consumption is increasing in the USA. Although ST products are considered to occupy a different position on the tobacco product continuum of risk compared to combusted tobacco products, they can still lead to health problems, including cancer, dental problems and changes in heart rate and blood pressure. Therefore, the determination of harmful and potentially harmful constituents released from ST products into human saliva is important. Four certified reference ST products were tested in this study: loose leaf chewing tobacco (3S1), Swedish-style snus (1S4), snus (1S5) and moist snuff (3S3). These certified reference ST products are manufactured for research purposes, not for human consumption. The reference ST products were used in this study because they have been well characterized and are intended and designed to represent commercial ST products. The reference ST products were incubated in human saliva at 37°C with a range of incubation times for the evaluation of constituents released from these products into human saliva. In this study, alkaloids (nicotine and cotinine), tobacco-specific N-nitrosamines (TSNAs) (N'-nitrosornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) and benzo[α]pyrene (B[α]P) in the reference ST products and saliva samples were determined by gas chromatography--mass spectrometry (GC--MS), gas chromatography--flame ionization detection (GC--FID), or ultra-performance liquid chromatography--tandem mass spectrometry (UPLC--MS-MS). Our results indicate that the amounts of each constituent released from the reference ST products were altered by the tobacco cut size and product format (pouched or unpouched). The constituents (TSNAs and alkaloids) in moist snuff and loose leaf chewing tobacco were released faster compared to those in Swedish-style snus and snus. B[α]P was only detected in reference moist snuff samples, and only 3.4% of the total B[α]P was released into human saliva after incubation for 60 min, whereas higher percentages of total TSNAs and alkaloids were released at different rates from the four reference ST products.


Subject(s)
Nitrosamines , Tobacco, Smokeless , Gas Chromatography-Mass Spectrometry , Humans , Nicotine/analysis , Nitrosamines/analysis , Saliva/chemistry , Nicotiana/chemistry , Tobacco, Smokeless/analysis
8.
J Plant Physiol ; 261: 153429, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33932764

ABSTRACT

Tobacco-specific nitrosamines (TSNAs) are carcinogens that accumulate in tobacco leaves during curing, storage, and processing, and their amounts in processed tobacco vary dependent on several intrinsic and extrinsic factors. Here, we assessed the hypothesis that there is a link between reactive oxygen species levels in leaves and TSNA formation during curing. First, we show that burley varieties KT 204LC and NCBH 129LC accumulate TSNAs to different levels but not as a result of a variety-specific abundance of TSNA precursors. Next, we measured the levels of reactive oxygen species, and we show that the variety that accumulates more TSNAs, NCBH 129LC, had significantly higher levels of hydrogen peroxide than KT 204LC. The NCBH 129LC also has more oxidatively damaged and glutathionylated proteins. Finally, we analyzed the antioxidant levels in KT 204LC and NCBH 129LC and their tolerance to oxidative stress. NCBH 129LC contained more of the essential antioxidant glutathione and was more tolerant to the oxidative stress-generating compound paraquat. Collectively, our data suggest that there is indeed a link between foliar oxidative stress parameters and the extent to which TSNAs accumulate in cured tobacco leaves.


Subject(s)
Nicotiana/metabolism , Nitrosamines/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Carcinogens/metabolism , Plant Leaves/metabolism
9.
Toxins (Basel) ; 12(12)2020 11 26.
Article in English | MEDLINE | ID: mdl-33256042

ABSTRACT

Fescue toxicosis impacts beef cattle production via reductions in weight gain and muscle development. Isoflavone supplementation has displayed potential for mitigating these effects. The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum metabolomes. Angus steers (n = 36) were allocated randomly in a 2 × 2 factorial arrangement of treatments including endophyte-infected (E+) or endophyte-free (E-) tall fescue seed, with (P+) or without (P-) isoflavones. Steers were provided a basal diet with fescue seed for 21 days, while isoflavones were orally administered daily. Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed by UPLC-MS. The MAVEN program was implemented to identify metabolites for MetaboAnalyst 4.0 and SAS 9.4 statistical analysis. Seven differentially abundant metabolites were identified in serum by isoflavone treatment, and eleven metabolites in the rumen due to seed type (p < 0.05). Pathways affected by treatments were related to amino acid and nucleic acid metabolism in both rumen fluid and serum (p < 0.05). Therefore, metabolism was altered by fescue seed in the rumen; however, isoflavones altered metabolism systemically to potentially mitigate detrimental effects of seed and improve animal performance.


Subject(s)
Isoflavones/administration & dosage , Metabolome/drug effects , Rumen/drug effects , Serum/metabolism , Amino Acids/metabolism , Animal Feed/microbiology , Animal Feed/poisoning , Animals , Cattle , Chromatography, Liquid , Dietary Supplements , Endophytes/physiology , Ergot Alkaloids/toxicity , Ergotism/drug therapy , Festuca/microbiology , Festuca/poisoning , Nucleic Acids/metabolism , Plant Poisoning/veterinary , Seeds/poisoning , Tandem Mass Spectrometry
10.
Heliyon ; 5(5): e01719, 2019 May.
Article in English | MEDLINE | ID: mdl-31193304

ABSTRACT

N'-Nitrosonornicotine (NNN), a carcinogenic tobacco-specific N'-nitrosamine (TSNA), is on the FDA list of harmful and potentially harmful constituents (HPHCs). Nornicotine, a product of the demethylation of nicotine, is the immediate alkaloid precursor for NNN formation. Nicotine, nornicotine and NNN are optically active. The accumulation of the isomers of nicotine, nornicotine, and NNN impacts their biological activity. In this paper, we report the determination of tobacco alkaloid enantiomers (including nicotine, nornicotine, anabasine, and anatabine) in samples of different tobacco lines using a reversed phase ultra-performance liquid chromatography-tandem mass spectrometer (UPLC/MS/MS) method. Current method demonstates excellent detection capability for all alkaloid enantiomers, with correlation coefficients (r2) > 0.996 within their linear dynamic ranges. The limit of detection (LOD) and limit of quantitation (LOQ) of all analytes are less than 10 ng/mL and 30 ng/mL, respectively. In addition, their recovery and coefficient of variation (CV%) are within 100-115% and 0.2-3.7%, respectively. The method validated in this paper is simple, fast, and sensitive for the quantification of alkaloid enantiomers in tobacco leaf and has been applied to investigations of tobacco alkaloid enantiomer ratios in different tobacco lines and tobacco products.

11.
Transl Anim Sci ; 3(1): 315-328, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32704802

ABSTRACT

Lolium arundinaceum [(Darbyshire) tall fescue] toxicosis is responsible for substantial beef production losses in the United States, due to its negative effects on reproduction, growth, and feed efficiency. These effects are consequences of toxic alkaloids within tall fescue. Interseeding legumes, such as Trifolium pratense (red clover), into pastures has been shown to mitigate a portion of these effects. Clovers contain isoflavones, which may play a role in tall fescue toxicosis mitigation. The present study utilized 36 Angus steers to determine the effects of daily supplementation with a red clover-isolated isoflavone feed additive on physiological symptoms of tall fescue toxicosis and the rumen microbial environment over a 21-d period. Angus steers were initially stratified based upon their single nucleotide polymorphism genotype at the DRD2 receptor. Treatments were then randomly assigned in a 2 × 2 factorial arrangement within a completely randomized design, where treatment factors consisted of tall fescue seed type (endophyte-infected tall fescue seed vs. endophyte-free tall fescue seed) supplemented with and without the isoflavone additive. Steers that consumed endophyte-infected tall fescue seed had lower serum prolactin concentrations (P = 0.0007), average daily gain (ADG; P = 0.003), final body weight (BW; P = 0.004), and feed efficiency (P = 0.018) when compared with steers that consumed endophyte-free tall fescue seed. Serum insulin-like growth factor-1 (IGF-1) tended to be reduced with supplementation of isoflavones (P = 0.06) but was unaffected by seed type (P ≥ 0.10) and seed by treatment interaction (P ≥ 0.10). Isoflavones reduced serum glucose levels (P = 0.023), but neither seed type, isoflavones, or their interaction affected serum urea nitrogen (SUN), nonesterified fatty acids (NEFA), or insulin (P ≥ 0.10). Volatile fatty acid concentrations, dry matter intake (DMI), ruminal pH, and overall feeding behaviors were also unaffected by seed type or isoflavone treatments (P ≥ 0.10). Twenty-eight ruminal bacteria taxa shifted as a result of seed type or isoflavone treatment (P < 0.05). In this experiment, feeding isoflavones to Angus cattle did not completely mitigate all symptoms of fescue toxicosis. However, dose-response trials may aid future research to determine if dietary supplementation with isoflavones alleviates fescue toxicosis symptoms and promotes livestock growth and performance.

12.
PLoS One ; 13(10): e0201866, 2018.
Article in English | MEDLINE | ID: mdl-30335760

ABSTRACT

Negative impacts of endophyte-infected Lolium arundinaceum (Darbyshire) (tall fescue) are responsible for over $2 billion in losses to livestock producers annually. While the influence of endophyte-infected tall fescue has been studied for decades, mitigation methods have not been clearly elucidated. Isoflavones found in Trifolium pratense (red clover) have been the subject of recent research regarding tall fescue toxicosis mitigation. Therefore, the aim of this study was to determine the effect of ergovaline and red clover isoflavones on rumen microbial populations, fiber degradation, and volatile fatty acids (VFA) in an in vitro system. Using a dose of 1.10 mg × L-1, endophyte-infected or endophyte-free tall fescue seed was added to ANKOM fiber bags with or without 2.19 mg of isoflavones in the form of a control, powder, or pulverized tablet, resulting in a 2 × 3 factorial arrangements of treatments. Measurements of pH, VFA, bacterial taxa, as well as the disappearance of neutral detergent fiber (aNDF), acid detergent fiber (ADF), and crude protein (CP) were taken after 48 h of incubation. aNDF disappearance values were significantly altered by seed type (P = 0.003) and isoflavone treatment (P = 0.005), and ADF disappearance values were significantly different in a seed × isoflavone treatment interaction (P ≤ 0.05). A seed × isoflavone treatment interaction was also observed with respect to CP disappearance (P ≤ 0.05). Eighteen bacterial taxa were significantly altered by seed × isoflavone treatment interaction groups (P ≤ 0.05), eight bacterial taxa were increased by isoflavones (P ≤ 0.05), and ten bacterial taxa were altered by seed type (P ≤ 0.05). Due to the beneficial effect of isoflavones on tall fescue seed fiber degradation, these compounds may be viable options for mitigating fescue toxicosis. Further research should be conducted to determine physiological implications as well as microbiological changes in vivo.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Lolium/drug effects , Rumen/microbiology , Animal Feed , Animals , Bacteria/classification , Bacteria/genetics , Cattle , Dietary Fiber/metabolism , Ergotamines/administration & dosage , Fatty Acids, Volatile , Fermentation/drug effects , Hydrogen-Ion Concentration , Isoflavones/administration & dosage , Isoflavones/chemistry , Lolium/growth & development , Lolium/metabolism , Proteins/chemistry , Rumen/chemistry , Rumen/metabolism , Seeds/drug effects , Seeds/growth & development , Trifolium/chemistry
13.
Oncol Lett ; 14(2): 1748-1756, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28789405

ABSTRACT

It has been demonstrated that docetaxel (DTX) may improve the overall survival of patients with castration-resistant prostate cancer (CRPC). However, its effectiveness is limited with time, and tumor escape is eventually inevitable. DTX resistance is the main reason for the failure of chemotherapy for CRPC. In the present study, the expression status of multidrug resistance protein 4 (MRP4) in DTX-resistant prostate cancer cells was investigated, and it was explored whether anti-androgen treatment may inhibit MRP4 expression and overcome DTX resistance. DTX-resistant C4-2/D cells were established by exposing DTX-sensitive C4-2/S cells to gradually increasing concentrations of DTX. MRP4 gene expression and the effect of androgen signaling on its expression were assessed by reverse transcription-polymerase chain reaction and western blotting. Intracellular and extracellular concentrations of DTX were detected by high-performance liquid chromatography. Anti-androgen treatment effects on DTX sensitivity were determined by a clonogenic test and an MTT cytotoxicity assay. MRP4 was overexpressed in C4-2/D cells, while its expression was barely detectable in C4-2/S cells. MRP4 expression levels were elevated in C4-2/D cells by dihydrotestosterone, whereas they were blocked by anti-androgen bicalutamide (BKL) treatment. Intracellular and extracellular DTX concentrations in C4-2/D cells were associated with MRP4 levels. The downregulation of MRP4 by BKL increased the intracellular concentration of DTX in C4-2/D cells and re-sensitized C4-2/D cells to DTX. These results indicated that overexpression of MRP4 mediates acquired DTX resistance, and suggest that targeting MRP4 expression by anti-androgen treatment may reverse DTX-resistant prostate cancer cells to DTX chemotherapy.

14.
Plant Physiol ; 172(4): 2374-2387, 2016 12.
Article in English | MEDLINE | ID: mdl-27794101

ABSTRACT

The MADS box transcription factor Arabidopsis (Arabidopsis thaliana) AGAMOUS-LIKE15 (AGL15) and a putative ortholog from soybean (Glycine max), GmAGL15, are able to promote somatic embryogenesis (SE) in these plants when ectopically expressed. SE is an important means of plant regeneration, but many plants, or even particular cultivars, are recalcitrant for this process. Understanding how (Gm)AGL15 promotes SE by identifying and characterizing direct and indirect downstream regulated genes can provide means to improve regeneration by SE for crop improvement and to perform molecular tests of genes. Conserved transcription factors and the genes they regulate in common between species may provide the most promising avenue to identify targets for SE improvement. We show that (Gm)AGL15 negatively regulates auxin signaling in both Arabidopsis and soybean at many levels of the pathway, including the repression of AUXIN RESPONSE FACTOR6 (ARF6) and ARF8 and TRANSPORT INHIBITOR RESPONSE1 as well as the indirect control of components via direct expression of a microRNA-encoding gene. We demonstrate interaction between auxin and gibberellic acid in the promotion of SE and document an inverse correlation between bioactive gibberellic acid and SE in soybean, a difficult crop to transform. Finally, we relate hormone accumulation to transcript accumulation of important soybean embryo regulatory factors such as ABSCISIC ACID INSENSITIVE3 and FUSCA3 and provide a working model of hormone and transcription factor interaction in the control of SE.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Glycine max/embryology , MADS Domain Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , F-Box Proteins/metabolism , Genes, Plant , Gibberellins/metabolism , Indoleacetic Acids/metabolism , MADS Domain Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Repressor Proteins/metabolism , Glycine max/drug effects , Glycine max/genetics
15.
J Nat Prod ; 79(4): 754-9, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-26959866

ABSTRACT

N'-Nitrosonornicotine (6) is a potent and organ-specific carcinogen found in tobacco and tobacco smoke in substantial amounts. Nicotine (1) and nornicotine (2) are proposed to be the precursors of 6 in tobacco. Since 1 can be rapidly demethylated to 2 in tobacco, to distinguish between the direct formation of 6 from these potential precursors is difficult. A gas chromatography/thermal energy analyzer method using two columns in series was developed to separate the enantiomers of 6, N'-nitrosoanabasine (7), and N'-nitrosoanatabine (8). Tobacco lines with different combinations of three nicotine demethylases inhibited were grown in the field. Air-cured leaves were analyzed for the enantiomeric composition of four main alkaloids and their corresponding tobacco-specific nitrosamines. The percentage of (R)-6 of total 6 varied from 7% to 69% in mutant lines. The measured 6 had the same enantiomeric composition as 2, rather than 1, even when the level of 2 was reduced to 0.6% of 1 in a triple mutant line. The pattern of the enantiomeric composition of 1, 2, and 6 demonstrated that the direct formation of 6 from 1, if it occurs, is negligible in air-cured tobacco. Since (S)-6 is more highly carcinogenic than its R form, the reduction of (S)-2 should be a priority for the reduction of 6.


Subject(s)
Alkaloids/chemistry , Carcinogens/chemistry , Nicotiana/chemistry , Nicotine/analogs & derivatives , Nicotine/chemistry , Nitrosamines/chemistry , Molecular Structure , North Carolina , Plant Leaves/chemistry , Stereoisomerism , Nicotiana/genetics
16.
Front Vet Sci ; 3: 17, 2016.
Article in English | MEDLINE | ID: mdl-26973844

ABSTRACT

Ergot alkaloids produced by a fungal endophyte (Epichloë coenophiala; formerly Neotyphodium coenophialum) that infects tall fescue (Lolium arundinaceum) can induce persistent constriction of the vasculature in ruminants, hindering their capability to thermo-regulate core body temperature. There is evidence that isoflavones produced by legumes can relax the vasculature, which suggests that they could relieve ergot alkaloid-induced vasoconstriction and mitigate the vulnerability to severe heat stress in ruminants that graze tall fescue. To test if isoflavones can relieve alkaloid-induced vasoconstriction, two pen experiments were conducted with rumen-fistulated goats (Capra hircus) to determine with ultrasonograpy if isoflavones can (1) promote vascular compliance by countering alkaloid-induced vasoconstriction and (2) relieve already imposed alkaloid-induced vasoconstriction. Goats were fed ad libitum chopped orchardgrass (Dactylis glomerata)-timothy (Phleum pratense) hay prior to conducting the experiments. Measures of carotid and interosseous luminal areas were obtained pre- (baseline) and post-ruminal infusions in both experiments with goats being fed the hay, and for blood flow rate in the carotid artery in Experiment 2. Responses to infusion treatments were evaluated as proportionate differences from baseline measures. Peak systolic velocity, pulsatility index, and heart rate were measured on the last day on treatment (DOT) in Experiment 1, and on all imaging sessions during Experiment 2. For Experiment 1, rumens were infused with ground toxic fescue seed and isoflavones in Phase A and with only the toxic seed in Phase B. The infusion treatments were switched between phases in Experiment 2, which employed a fescue seed extract having an ergot alkaloid composition equivalent to that of the ground seed used in Experiment 1. During Experiment 1, luminal areas of carotid and interosseous arteries in Phase A did not deviate (P > 0.1) from baselines over 1, 2, 3, and 4 DOT, but the areas of both declined linearly from baselines over 1, 2, 3, and 4 DOT in Phase B. By 6, 7, and 8 DOT in Experiment 2, luminal areas of the arteries and flow rate declined from baselines with infusions with the only seed extract in Phase A, but luminal areas and flow rate increased over 4, 5, and 6 DOT with the additional infusion of isoflavones. Peak systolic velocity and heart rate were not affected by treatment in either experiment, but were highest when infused with only ergot alkaloids in both experiments. Treatment with isoflavones was demonstrated to relax the carotid and interosseous arteries and reduce resistance to blood flow. Results indicate that isoflavones can relax persistent vasoconstriction in goats caused by consumption of ergot alkaloids, and mitigate the adverse effect that ergot alkaloids have on dry matter intake.

17.
Plant Biotechnol J ; 14(7): 1500-10, 2016 07.
Article in English | MEDLINE | ID: mdl-26800860

ABSTRACT

Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) dramatically decreased free nitrate levels in the leaves. Field-grown tobacco plants expressing this NR variant exhibited greatly reduced levels of TSNAs in both cured leaves and mainstream smoke of cigarettes made from these materials. Decreasing leaf nitrate levels via expression of a constitutively active NR enzyme represents an exceptionally promising means for reducing the production of NNN and NNK, two of the most well-documented animal carcinogens found in tobacco products.


Subject(s)
Carcinogens/metabolism , Nicotiana/genetics , Nitrate Reductase/genetics , Nitrogen/metabolism , Nitrosamines/metabolism , Metabolic Networks and Pathways , Nitrates/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Nicotiana/metabolism , Tobacco Products
18.
Front Chem ; 2: 88, 2014.
Article in English | MEDLINE | ID: mdl-25374886

ABSTRACT

Tall fescue pastures cover extensive acreage in the eastern half of the United States and contribute to important ecosystem services, including the provisioning of forage for grazing livestock. Yet little is known concerning how these pastures will respond to climate change. Tall fescue's ability to persist and provide forage under a warmer and wetter environment, as is predicted for much of this region as a result of climate change, will likely depend on a symbiotic relationship the plant can form with the fungal endophyte, Epichloë coenophiala. While this symbiosis can confer environmental stress tolerance to the plant, the endophyte also produces alkaloids toxic to insects (e.g., lolines) and mammals (ergots; which can cause "fescue toxicosis" in grazing animals). The negative animal health and economic consequences of fescue toxicosis make understanding the response of the tall fescue symbiosis to climate change critical for the region. We experimentally increased temperature (+3°C) and growing season precipitation (+30% of the long-term mean) from 2009-2013 in a mixed species pasture, that included a tall fescue population that was 40% endophyte-infected. Warming reduced the relative abundance of tall fescue within the plant community, and additional precipitation did not ameliorate this effect. Warming did not alter the incidence of endophyte infection within the tall fescue population; however, warming significantly increased concentrations of ergot alkaloids (by 30-40%) in fall-harvested endophyte-infected individuals. Warming alone did not affect loline alkaloid concentrations, but when combined with additional precipitation, levels increased in fall-harvested material. Although future warming may reduce the dominance of tall fescue in eastern U.S. pastures and have limited effect on the incidence of endophyte infection, persisting endophyte-infected tall fescue will have higher concentrations of toxic alkaloids which may exacerbate fescue toxicosis.

19.
Front Chem ; 2: 110, 2014.
Article in English | MEDLINE | ID: mdl-25566528

ABSTRACT

Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because synthetically produced ergovaline is difficult to obtain, we developed a seed extraction and partial purification protocol for ergovaline/ergovalinine that provided a biologically active product. Tall fescue seed was ground and packed into several different sized columns for liquid extraction. Smaller particle size and increased extraction time increased efficiency of extraction. Our largest column was a 114 × 52 × 61 cm (W × L × D) stainless steel tub. Approximately 150 kg of seed could be extracted in this tub. The extraction was done with 80% ethanol. When the solvent front migrated to bottom of the column, flow was stopped and seed was allowed to steep for at least 48 h. Light was excluded from the solvent from the beginning of this step to the end of the purification process. Following elution, ethanol was removed from the eluate by evaporation at room temperature and the resulting syrup was freeze-dried. About 80% recovery of alkaloids was achieved with 18-fold increase in concentration of ergovaline. Initial purification of the dried product was accomplished by extracting with hexane/water (6:1, v/v). The aqueous fraction was extracted with chloroform, the aqueous layer discarded, after which the chloroform was removed with a resulting 20-fold increase of ergovaline. About 65% of the ergovaline was recovered from the chloroform residue for an overall recovery of 50%. The resultant partially purified ergovaline had biological activities in in vivo and in vitro bovine bioassays that approximate that of synthetic ergovaline.

20.
Asian J Androl ; 15(6): 773-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23955552

ABSTRACT

Whether continuous docetaxel (DTX) chemotherapy offers an advantage over intermittent therapy for castration-resistant prostate cancer (CRPC) is unknown. In this study, we evaluated the efficacy, toxicity and quality of life (QoL) of intermittent tri-weekly DTX with bicalutamide in CRPC. Forty-two patients (group A) with CRPC were enrolled. The patients received intravenous DTX (75 mg m(-2)) once tri-weekly with oral bicalutamide (50 mg) once daily. Patients had a DTX holiday when the prostate-specific antigen (PSA) level declined ≥50%. DTX was restarted in patients with a PSA increase ≥25%. Sixty patients (group B) who had matching characteristics and had continuously received DTX without bicalutamide for 10-12 cycles were also enrolled. There were no statistically significant differences in progression-free survival (8 months vs. 9 months, P=0.866) or overall survival (19 months vs. 21 months, P=0.753) between groups A and B; however, the proportions of patients in group A with all grades of neutropenia (33% vs. 58%, P=0.013) and nausea/vomiting (11% vs. 29%, P=0.024) were significantly less compared to group B. A significant improvement in the global health and fatigue scores was recorded for group A post-chemotherapy compared to pre-chemotherapy (P<0.05). The fatigue, nausea/vomiting and appetite loss scores in group B were increased post-chemotherapy compared to pre-chemotherapy (P<0.05). In conclusion, intermittent tri-weekly DTX plus bicalutamide is well tolerated and has the potential to achieve comparable disease control with an improvement in QoL for patients with CRPC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Orchiectomy , Prostatic Neoplasms/drug therapy , Aged , Aged, 80 and over , Anilides/administration & dosage , Case-Control Studies , Docetaxel , Drug Administration Schedule , Humans , Male , Middle Aged , Nitriles/administration & dosage , Prospective Studies , Prostate-Specific Antigen/blood , Prostatic Neoplasms/surgery , Survival Analysis , Taxoids/administration & dosage , Tosyl Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...